Optomechanical gyroscope utilizing the Sagnac effect

Abstract: An apparatus and a method for detecting rotation based on the Sagnac effect is disclosed. Input light having sufficient power is injected into a circulating optical resonator to thereby excite an optomechanical oscillation of the resonator at an instantaneous mechanical angular frequency. Rotation of the circulating optical resonator causes a change in a frequency of the optomechanical oscillation of the resonator, which in turn causes the instantaneous mechanical angular frequency to change. The optomechanical oscillation produces modulation sidebands in the resonating optical field at the instantaneous mechanical angular frequency and harmonics thereof, which are demodulated from the optical frequency by detection in a photodetector. Differences in the instantaneous mechanical angular frequency induced by rotation are detected by processing the photodetector output signal.
Filed: 8/10/2018
Application Number: 16/100925
Related Opportunity: Sagnac Optomechanical Gyroscope
Next-Generation Automotive
This invention was made with Government support under Contract No. DE-NA0003525 awarded by the United States Department of Energy/National Nuclear Security Administration. The Government has certain rights in the invention.
Attribution for Derwent World Patents Index Records published on Sandia ® Clarivate. All rights reserved. Republication or redistribution of Clarivate content, including by framing or similar means, is prohibited without the prior written consent of Clarivate. Clarivate and its logo, as well as all other trademarks used herein are trademarks of their respective owners and used under license.