Abstract: | Detecting anomalies with a spiking neural network is provided. An input layer receives a number of inputs and converts them into phase-coded spikes, wherein each input is contained within a number of progressively larger neighborhoods of surrounding inputs. From the phase-coded spikes, a median value of each input is computed for each size neighborhood. An absolute difference of each input from its median value is computed for each size neighborhood. A median absolute difference (MAD) of each input is computed for each size neighborhood. For each input, an adaptive median filter (AMF) determines if a MAD for any size neighborhood exceeds a respective threshold. If one or more neighborhoods exceeds its threshold, the AMF outputs the median value of the input for the smallest neighborhood. If none of the neighborhoods exceeds the threshold, the AMF outputs the original value of the input. |