Systems, methods and computer program products for self-tuning sensor data processing

Abstract: Systems and methods are disclosed that include tools that utilize Dynamic Detector Tuning (DDT) software that identifies near-optimal parameter settings for each sensor using a neuro-dynamic programming (reinforcement learning) paradigm. DDT adapts parameter values to the current state of the environment by leveraging cooperation within a neighborhood of sensors. The key metric that guides the dynamic tuning is consistency of each sensor with its nearest neighbors: parameters are automatically adjusted on a per station basis to be more or less sensitive to produce consistent agreement of detections in its neighborhood. The DDT algorithm adapts in near real-time to changing conditions in an attempt to automatically self-tune a signal detector to identify (detect) only signals from events of interest. The disclosed systems and methods reduce the number of missed legitimate detections and the number of false detections, resulting in improved event detection.
Filed: 11/30/2017
Application Number: 15/828188
This invention was made with Government support under Contract No. DE-NA0003525 awarded by the United States Department of Energy/National Nuclear Security Administration. The Government has certain rights in the invention.
Attribution for Derwent World Patents Index Records published on Sandia ® Clarivate. All rights reserved. Republication or redistribution of Clarivate content, including by framing or similar means, is prohibited without the prior written consent of Clarivate. Clarivate and its logo, as well as all other trademarks used herein are trademarks of their respective owners and used under license.