Real-time process monitoring for direct ink write additive manufacturing

Abstract: Direct ink write (DIW) printing of reactive resins presents a unique challenge due to the time-dependent nature of the rheological and chemical properties of the ink. As a result, careful print optimization or process control is important to obtain consistent, high quality prints. The present invention uses a flow-through characterization cell for in situ chemical monitoring of a resin ink during DIW printing. Additionally, in-line extrusion force monitoring can be combined with off-line post inspection using machine vision. By combining in-line spectroscopy and force monitoring, it is possible to follow reaction kinetics (for example, curing of a reactive resin) and viscosity changes during printing, which can be used for a closed-loop process control. Additionally, the capability of machine vision to automatically identify and quantify print artifacts can be incorporated on the printing line to enable real-time, AI-assisted quality control of the printed products. Together, these techniques can form the building blocks of an optimized process control strategy when complex reactive ink must be used to produce printed hardware.
Filed: 10/17/2022
This invention was made with Government support under Contract No. DE-NA0003525 awarded by the United States Department of Energy/National Nuclear Security Administration. The Government has certain rights in the invention.
Data from Derwent World Patents Index, provided by Clarivate
All rights reserved. Republication or redistribution of Clarivate content, including by framing or similar means, is prohibited without the prior written consent of Clarivate. Clarivate and its logo, as well as all other trademarks used herein are trademarks of their respective owners and used under license.