Organosilicon-based electrolytes for long-life lithium primary batteries
| Abstract: Organosilicon electrolytes exhibit several important properties for use in lithium carbon monofluoride batteries, including high conductivity/low viscosity and thermal/electrochemical stability. Conjugation of an anion binding agent to the siloxane backbone of an organosilicon electrolyte creates a bi-functional electrolyte. The bi-functionality of the electrolyte is due to the ability of the conjugated polyethylene oxide moieties of the siloxane backbone to solvate lithium and thus control the ionic conductivity within the electrolyte, and the anion binding agent to bind the fluoride anion and thus facilitate lithium fluoride dissolution and preserve the porous structure of the carbon monofluoride cathode. The ability to control both the electrolyte conductivity and the electrode morphology/properties simultaneously can improve lithium electrolyte operation. |
| Filed: 1/19/2017 |
| Application Number: 15/409845 |
| Tech ID: SD 12924.1 |
| This invention was made with Government support under Contract No. DE-NA0003525 awarded by the United States Department of Energy/National Nuclear Security Administration. The Government has certain rights in the invention. |
| Data from Derwent World Patents Index, provided by Clarivate All rights reserved. Republication or redistribution of Clarivate content, including by framing or similar means, is prohibited without the prior written consent of Clarivate. Clarivate and its logo, as well as all other trademarks used herein are trademarks of their respective owners and used under license. |