Abstract: | A microcombustor comprises a microhotplate and a catalyst for sustained combustion on the microscale. The microhotplate has very low heat capacity and thermal conductivity that mitigate large heat losses arising from large surface-to-volume ratios typical of the microdomain. The heated catalyst enables flame ignition and stabilization, permits combustion with lean fuel/air mixtures, extends a hydrocarbon's limits of flammability, and lowers the combustion temperature. The reduced operating temperatures enable a longer microcombustor lifetime and the reduced fuel consumption enables smaller fuel supplies, both of which are especially important for portable microsystems applications. The microcombustor can be used for on-chip thermal management and for sensor applications, such as heating of a micro gas chromatography column and for use as a micro flame ionization detector. |