Method of tuning physical properties of thermosets

Abstract: Polymerization-induced phase separation enables fine control over thermoset network morphologies, yielding heterogeneous structures with domain sizes tunable over 1-100 nm. However, the controlled chain-growth polymerization techniques exclusively employed to regulate morphology at these length scales are unsuitable for most thermoset materials typically formed through step-growth mechanisms. By employing binary mixtures in place of the classic constituents of phase-separating thermosets—resin, curing agent, and secondary polymer—facile tunability over morphology can be achieved through a single compositional parameter. Indeed, this method yields morphologies spanning nano-scale to macro-scale, controlled by the relative reactivities and thermodynamic compatibility of the network components. Due to the connection between chain dynamics and microstructure in these materials, the tunable morphology enables exquisite control over glass transition and other physical and mechanical properties.
Filed: 1/17/2022
This invention was made with Government support under Contract No. DE-NA0003525 awarded by the United States Department of Energy/National Nuclear Security Administration. The Government has certain rights in the invention.
Attribution for Derwent World Patents Index Records published on Sandia ® Clarivate. All rights reserved. Republication or redistribution of Clarivate content, including by framing or similar means, is prohibited without the prior written consent of Clarivate. Clarivate and its logo, as well as all other trademarks used herein are trademarks of their respective owners and used under license.