Edge majorana quasiparticles and qubits
| Abstract: Various embodiments described herein provide for a topological quantum computer that uses edge Majorana quasi-particles to form qubits. An inverted Indium Arsenide (InAs) and Gallium Antimonide (GaSb) heterostructure is disclosed that is a quantum spin Hall insulator. A layer of aluminum can be deposited over a nanotube that is placed across the layers of the heterostructure. Once the nanotube is removed, and a gate is formed on the heterostructure and the heterostructure is cooled so that the aluminum becomes superconducting, helical edge states are formed at the junction of the super conducting aluminum, the InAs, and the GaSb which creates a Majorana zero modes (MZMs) at zero magnetic field. The MZMs can be used to construct a topological qubit for fault-resistant topological quantum computation. |
| Filed: 12/13/2021 |
| This invention was made with Government support under Contract No. DE-NA0003525 awarded by the United States Department of Energy/National Nuclear Security Administration. The Government has certain rights in the invention. |
| Data from Derwent World Patents Index, provided by Clarivate All rights reserved. Republication or redistribution of Clarivate content, including by framing or similar means, is prohibited without the prior written consent of Clarivate. Clarivate and its logo, as well as all other trademarks used herein are trademarks of their respective owners and used under license. |