Additive manufacturing print-heads for exotic material applications

Abstract: Described herein is an additive manufacturing apparatus that is well-suited for constructing piezoelectric sensors. The additive manufacturing apparatus includes an extrusion nozzle formed of a conductive material such as aluminum. The extrusion nozzle has a channel by way of which printing material exits the extrusion nozzle, wherein a build plate is configured to receive the printing material responsive to the printing material exiting the extrusion nozzle. An arc suppressor formed of a semiconductor is coupled to the extrusion nozzle and is configured to dissipate excess charge that would otherwise exist on the extrusion nozzle when a relatively high bias voltage is applied to the extrusion nozzle. Thus, the arc suppressor mitigates arcing between the extrusion nozzle and the build plate. Arc suppressing gas is also optionally introduced into a printing region, thereby further mitigating arcing between the extrusion nozzle and the build plate.
Filed: 8/22/2018
Application Number: 16/109234
This invention was made with Government support under Contract No. DE-NA0003525 awarded by the United States Department of Energy/National Nuclear Security Administration. The Government has certain rights in the invention.
Attribution for Derwent World Patents Index Records published on Sandia ® Clarivate. All rights reserved. Republication or redistribution of Clarivate content, including by framing or similar means, is prohibited without the prior written consent of Clarivate. Clarivate and its logo, as well as all other trademarks used herein are trademarks of their respective owners and used under license.