Enhanced Substrates for Controlled Explosive Properties

Improved control of initiation and detonation from enhanced substrates with minimal post-processing and fabrication compared to traditional explosive processes

In high explosives, the density and porosity of energetic materials contributes to initiation and detonation characteristics. Traditional explosive processing methods like melt casting or powder pressing are known for their less than optimal control of initiation and detonation characteristics due to variations in these key areas. Researchers at Sandia National Laboratories have developed substrates enabling improved control of explosive film density and porosity – and therefore initiation and detonation characteristics – with minimal post-processing or material fabrication. Enhanced detonation velocity, yield, and control over sensitivity is valuable for the application of explosives in defense, mining, and research fields.

This technique leverages physical vapor deposition (PVD) and substrate modification to augment energetic film density and porosity in a scalable and economical manner. More than a 10% variation in local pentaerythritol tetranitrate (PETN) density is achievable without explosive pressing operations. Interfaces are prepared in a vacuum chamber to control crystallographic orientation and grain structure during nucleation and film growth. This efficient technique enables tuning of density, porosity, and other energetic film parameters important to detonation.

Benefits

  • Scalable, economical control with less processing
  • Improved control of initiation and detonation through enhancement of substrate surface energy
  • More than a 10% variation in local PETN density achievable without explosive pressing operations
  • Improved consistency in detonation and scalability
  • Optimized explosive density with no additional explosive processing or handling
  • Greater safety and assurance

Applications and Industries

  • Defense
  • Explosives
  • Mining
Technology ID

SD 14090.2

Published

11/7/2019

Last Updated

11/7/2019