Abstract: A microelectromechanical systems (MEMS)-tunable optical ring resonator is described herein. The ring resonator includes a resonator ring and a tuner ring, along with one or more springs. The springs may be internal or external, i.e., either within or outside the areal footprint of the resonator ring and the tuner ring. The one or more springs are configured to displace the tuner ring from the resonator ring by a desired gap based upon a desired resonant wavelength of the resonator ring. Tuning is implemented by applying a voltage to the ring resonator, with motion of the tuner ring causing a corresponding change in the effective index of the resonator ring. As the ring resonator is essentially a capacitive device, it draws very little power once tuning is achieved. |
Filed: 8/2/2021 |
This invention was made with Government support under Contract No. DE-NA0003525 awarded by the United States Department of Energy/National Nuclear Security Administration. The Government has certain rights in the invention. |
Attribution for Derwent World Patents Index Records published on Sandia ® echo date('Y'); ?> Clarivate. All rights reserved. Republication or redistribution of Clarivate content, including by framing or similar means, is prohibited without the prior written consent of Clarivate. Clarivate and its logo, as well as all other trademarks used herein are trademarks of their respective owners and used under license. |