Technology Description

Sandia has developed red-emitting phosphors that will help to transform the cold blue of many current light-emitting diodes (LEDs) into the warm white that is preferred for general lighting. This advance could help move solid-state lighting (SSL) into broader applications and market spaces. This class of rare-earth doped tantalates has unprecedented compositions and structures as well as excellent characteristics for a red-phosphor component for blue or UV excitation. Some compositions and phases are formed as nanoparticles, which are advantageous for minimal emission loss due to scattering. These phases and nanoparticle forms can only be obtained by this invention.

The solid-state devices that have been targeted by this technology produce light in the blue to yellow portion of the visible spectrum, which means that orange or red objects appear dim and colorless under this lighting. In order to improve white light quality, devices need to be equipped with these red-emitting phosphors that can be excited by blue LEDs as developed by Sandia.

Technological Benefits

- Improved white light quality
- Unprecedented red-phosphor component for blue or UV excitation
- Reduces the need for stringent emission wavelength control of the LEDs
- Increases the absorption cross section of the phosphor
- Exceeds traditional LED color quality
- Improved energy efficiency

Potential Applications

- Electronics
- Solid-state lighting
- Photocatalysis
- Ion conducting

Contact Us

For more information, please contact: Sandia National Laboratories ip@sandia.gov Refer to SD#11392

Or to learn more, please visit our website at: https://ip.sandia.gov