Integration of Chip-based Sample Preconcentration into the µChemLab™/CB Analysis Platform

Victoria A. VanderNoot, Boyd Wiedenman, Yolanda Finstchenko and Julia Fruetel

Sandia National Laboratories
P.O. Box 969, Livermore, CA 94551-0969

HPCE 2003
San Diego, CA

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.
μChemLab™ Separation Platform

- Aerosol Collector
- Sample Prep
- μChemLab™/CB Liquid Analysis Module
- Water Analysis
- Microfluidic Delivery
 - Application of electric fields moves fluids
- Dual Channel Microchip Separations
- Laser Induced Fluorescence Detection
μChemLab™ Separation Platform

Two Channel Device

Capillary Gel Electrophoresis (CGE) Channel
- Beckman 14-200 SDS Gel
- Reversed polarity

Capillary Zone Electrophoresis (CZE) Channel
- 10 mM phytic acid, pH 9.5 containing 2 mM DAPS (zwitterionic detergent)
- Normal polarity

Fluorescamine labeling
- Fluorogenic dye
- Fast-reacting, amine specific
- Ex/Em 390 nm/480nm

Detection limits
- nM for CGE
Approaches to Preconcentration

• **Solid Phase Extraction** (on-going efforts for the miniaturization of SPE)

• **Electrokinetic Trapping** *(P411-T: Novel Miniaturized Protein Preconcentrator Based On Electrokinetic Trapping, Anup K. Singh; Daniel J. Throckmorton; Brian J. Kirby)*

• **Salt-Bridge**

Integration into the µChemLab™/CB

Silicate layer Approach:

- Sol-gel silicate layer allows current to pass
- Large molecules (i.e. proteins) retained
- Etched channels

Alternative Approach:

- Eliminate silicate layer
- Makes use of narrow gap and natural surface roughness
- Conduction via very small bore channels
- Large molecules (i.e. proteins) retained
- Etched channels

Chip Layout

Close-up of the Preconcentrator Region
Two Channel Device

Capillary Gel Electrophoresis (CGE) Channel
- Beckman 14-200 SDS Gel
- Reversed polarity

Capillary Zone Electrophoresis (CZE) Channel
- 10 mM phytic acid, pH 9.5 containing 2 mM DAPS (zwitterionic detergent)
- Normal polarity

Fluorescamine labeling
- Fluorogenic dye
- Fast-reacting, amine specific
- Ex/Em 390 nm/480nm

Detection limits
- nM for CGE
Imaging Normal and Preconcentrated Injections in CGE

Normal Mode

P1 Preconcentration Mode

P2 Preconcentration Mode

S → SW

S → P1

S → P2
CGE Separations Using Normal and Preconcentrated Injections

20 nM Lactalbumin, 20 nM Ovalbumin

60 s preconcentration
No preconcentration
Peak Areas in CGE Separations Increase as a Function of Preconcentration Duration

50 nM Lactalbumin, 50 nM Ovalbumin

120 s preconcentration

60 s preconcentration

No preconcentration

Fluorescence

Time (s)
Sub-Nanomolar Detection Limits Using CGE Separations and Preconcentration

500 pM LAC
500 pM OVA

Fluorescence
Time (s)
Characterization of Performance as a Function of Gap Width

Gap width
- Isotropic etch depth used to generate gaps of different widths
- For comparison purposes, all preconcentrations were held to 60s

*Single Batch Data

*Single Batch Data
μChemLab™ Separation Platform

Two Channel Device

Capillary Gel Electrophoresis (CGE) Channel
- Beckman 14-200 SDS Gel
- Reversed polarity

Capillary Zone Electrophoresis (CZE) Channel
- 10 mM phytic acid, pH 9.5 containing 2 mM DAPS (zwitterionic detergent)
- Normal polarity

Fluorescamine labeling
- Fluorogenic dye
- Fast-reacting, amine specific
- Ex/Em 390 nm/480nm

Detection limits
- nM for CGE
Preconcentration Using CZE

Elimination of EOF is required

• no bulk flow of fluid through the gap
 \[\therefore\] residual EOF could lead to pressure generation

Coating with linear polyacrylamide

SAM application
UV light polymerization

Julie Fruetel, Victoria VanderNoot, Jay West, Brian Kirby, Ernest Hasselbrink and Timothy Shepodd, Laser-polymerized thin-film coating for protein analysis by CGE in a microchip, HPCE 2002
Imaging Normal and Preconcentrated Injections in CZE

P1

SW

S

P2

Normal Mode
S → SW

P1 Preconcentration Mode
S → P1
CZE Separations Using Normal and Preconcentrated Injections

Running buffer: 5 mM phosphate, pH 8 containing 5 mM CAS-U zwitterionic detergent
Reverse polarity
Summary

• Preconcentration has been incorporated in the chip design with no additional processing steps during chip fabrication

• Successfully demonstrated with both CGE and CZE
 ▪ Preconcentration factors of 10-20x are routinely achievable in only 60s
 ▪ Coating and/or elimination of EOF is essential for CZE separations
 ▪ Buffer conditions in CZE will need to be optimized to achieve both good separation efficiency and the elimination of EOF
Acknowledgements

Robert S. Foote and J. Michael Ramsey at Oak Ridge National Labs for their valuable insights

&

Nicole Baryla and Charles A. Lucy for supplying us with a sample of CAS-U zwitterionic detergent

The μChemLab Technical Team

Gabriela Chirica
Wen-Yee Choi
Mark Claudnic
Evelyn Cruz
Scott Ferko
Yolanda Fintschenko
Julie Fruetel

Brian Holliday
Brent Horn
Susan Jamison
Bill Kleist
Ron Renzi
George Sartor
George Schubert

Isaac Shokair
Jamie Stamps
Mary Clare Stoddard
Victoria VanderNoot
Jay West
Boyd Wiedenman
Dan Yee

Funding
Dept. of Energy Chemical and Biological National Security Program