Technology Description

A unique gas diffusion electrode technique resulting in little to no leftover methanol, therefore increasing the overall effectiveness and performance of fuel cells.

Direct methanol fuel cells have an advantage over hydrogen fuel cells because the liquid methanol has high energy density and is easily transportable. However, one of the challenges with this process has been the large amount of methanol that crosses over from the cathode side of the membrane electrode assembly. This crossover poisons the cathode, decreasing operating voltage and weakening the power output of the cell.

Sandia researchers have developed a method for mitigating the methanol crossover poisoning effect in fuel cells. This unique gas diffusion electrode technique results in little to no leftover methanol, therefore increasing the overall effectiveness and performance of fuel cells.

Technological Benefits

- Advanced materials
- Power and efficiency gains
- Smaller scale
- Reduced cost

Potential Applications

- Electronics
- Microelectronics
- Portable power supply
- Storage battery
- Transportation
- Automotive

Contact Us

For more information, please contact:
Sandia National Laboratories
ip@sandia.gov
Refer to SD#11172
Or to learn more, please visit our website at:
https://ip.sandia.gov