The Effect of Healthcare Environments on a Pandemic Influenza Outbreak

Victoria J. Davey¹
Daniel C. Cannon²
Robert J. Glass²

¹Department of Veterans Affairs
²Sandia National Laboratories

Modeling for Public Health Action
Centers for Disease Control and Prevention
December 9-10, 2010
Context: Influenza transmission within healthcare settings

- **Patients, staff, visitors** bring influenza into healthcare settings
 - Outbreaks cause morbidity and mortality among staff, inpatients, long term residents (Bridges 2003)

- **Control measures in healthcare settings** include
 - Negative pressure rooms
 - Use of PPE
 - Screening
 - Voluntary home quarantine of exposed staff
 - Visitor limitations
 - Prophylactic medications, vaccine

- **Applied by severity/pathogenicity**
 - Limit transmission in healthcare settings?
 - Few clinical studies of efficacy (Loeb 2009)
Context: Influenza transmission from healthcare settings to community

- Few reports of transmission of respiratory viruses from healthcare settings to communities
 - Biologically plausible

- Exception: 2002-2003 SARS experience:
 - Healthcare settings were high-risk environments for transmission
 - Healthcare settings were source of infection for large percentage of victims who transmitted to community members
 - A ‘healthcare centered’ epidemic (Lloyd-Smith 2003, Possamai 2007)
Context: Related Work

❖ **Nuno et al. (2008)**
 - Compartmental model of a community with an embedded acute care hospital.
 - Open admittance policy rendered non-pharmaceutical measures ineffective on within-healthcare control of influenza transmission.

❖ **Lloyd-Smith et al. (2003)**
 - Estimated effects of patient isolation, contact tracing and quarantine on community SARS outbreak.
 - Quarantine of healthcare workers was the key measure in preventing transmission to community.
Glass et al. EID 2006: determined the critical importance of children in influenza epidemic propagation. Closing schools and social distancing of children reduced infections by 90%

Davey et al. EID 2008: evaluated thresholds for rescinding community mitigation strategies

Glass & Glass BMC Public Health 2008: surveyed children and teenagers found teens had most contacts that could serve as influenza transmission ‘backbone’

Davey & Glass PLoS One 2008: a systematic evaluation of feasible mitigation strategies at wide range of pandemic severities and found critical enablers of success—rapid, stringent, regional implementation with high compliance

Perlroth et al. CID 2009: evaluated cost-effectiveness of mitigation strategies, finding that the addition of school closure to adult and child social distancing and antiviral treatment and prophylaxis is not cost-effective for viral strains with low infectivity (Ro 1.6 and below) and low case fatality rates (1% and below)
Objectives

- To determine if healthcare settings serve as intensive transmission environments for influenza epidemics, increasing effects on communities.

- To determine which mitigation strategies are best for use in healthcare settings and in communities to limit influenza epidemic effects.

- To determine which mitigation strategies are best to prevent illness in healthcare workers.
Methods: Base Social Network Design

A community in a networked agent-based model:

- Explicit social contact network
- Stylized US community of 10,000
- Agents: Children 18%, Teen 11%, Adult 59%, Senior 12% (US Census, 2000)
- Individuals live in overlapping groups of varying sizes: households, schools, workplaces, neighborhoods, extended families, gatherings, random meetings (RJ Glass et al. 2006; L Glass et al. 2008)
- Model constructs links between individuals that are potential connections; the numbers of links and configurations determined by pre-defined network topology (here: random, ring, fully connected)
Methods: Influenza Transmission

Process of influenza transmission

- **Links** are assigned an associated mean frequency of contacts per link per day, depending on group type (e.g. classroom or household)
- **Contacts** (realized links) present opportunity for influenza transmission
- Successful transmission = infectious contacts that result from a set of stochastically scheduled events that vary with each simulation.
Methods: Influenza Transmission

Influenza transmission occurs as two events

- **First event**: State transition—describes an individual’s experience with influenza illness
 - State transitions are based on observed and experimental human influenza infections (Carrat 2008, Ferguson 2006, Germann, 2006, Monto 1985)

![Diagram of influenza transmission states and transition probabilities]

- **Latent**: Mean duration 1.25 days
- **Infectious presymptomatic**: Mean duration 0.5 days, $I_R = 0.25$
- **Infectious symptomatic Circulate**: Mean duration 1.5 days, $I_R = 1.0$ for first 0.5 day, then reduced to 0.375 for final day
- **Infectious symptomatic Stay home**: Mean duration 1.5 days, $I_R = 1.0$ for first 0.5 day, then reduced to 0.375 for final day
- **Infectious asymptomatic**: Mean duration 2 days, $I_R = 0.25$
- **Immune**: Transition Probabilities $p_S = 0.5$, $p_H = 0.5$, $p_M = 0$
- **Dead**
Methods: Influenza Transmission

Second event: individual to individual influenza transmission

- probability that a contact will occur, p_c in a small time interval, dt, along a link with contact frequency v_c is: $p_c = v_c dt$

- The percentage of total contacts between two linked individuals that actually result in transmission is scaled by $I_D^* I_R^* I_A^* S_P^* S_A^*$ where

 I_D^* = the infectivity of the disease

 I_R^* = the relative infectivity of the disease state

 I_A^* = the relative infectivity of the individual who is transmitting

 S_P^* = the susceptibility of people to the disease (here taken as 1.0)

 S_A^* = is the relative susceptibility of the individual being infected

- The probability of an influenza transmission event along a given link between an infectious and a susceptible individual, p_i, is given by:

 $p_i = I_D^* I_R^* I_A^* S_P^* S_A^* v_c^* dt$
Methods: Healthcare Sites

- **Two healthcare delivery sites**
 - Outpatient
 - Capacity maximum 60 patients and escorts; 24/7 operation

- **3 shifts of healthcare workers (mean shift size: 20; range 10-50)**
 - Healthcare workers are of many disciplines
 - Equal likelihood to expose or be exposed to influenza at healthcare site

- **Community members come to healthcare site**
 - Patients receive care for influenza or other illness
 - 50% of symptomatic influenza patients seek healthcare (HHS Pandemic Influenza Plan 2005)
 - 70% of entire community population seeks healthcare at least once per year for any reason (VA Benefits and Healthcare Utilization, 2008)
 - **Escorts accompany patients**
 - Asymptomatic teenager, adult, or senior family member if available.

- **At healthcare site**
 - Infected and non-infected patients and escorts mingle in waiting area
 - Patients are assigned to one of 4 intake queues with shortest waiting time
 - Mean visit times determined from published data (Nat'l Health Statistics Reports 2008)
Methods: Design of Healthcare Sites

- Patients’ and escorts’ links, contacts, and infectious contacts are formed independently

- Links are:
 - Patient to patient
 - Patient to escort
 - Escort to escort
 - Healthcare worker to patient
 - Healthcare worker to escort
 - Healthcare worker to healthcare worker

- #s of links are scaled according to occupancy of site

- Frequencies of contacts per link are assigned and determine #s of infectious contacts

- If healthcare workers are not able to work, the number of patients able to be seen is decreased linearly according to proportion available.

- Healthcare workers with influenza return to work after a 7 day recovery period
Community-Based Interventions

<table>
<thead>
<tr>
<th></th>
<th>Intervention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Close Schools</td>
<td>Schools closed, all school contacts reduced by 90%, household contacts doubled</td>
</tr>
<tr>
<td>CTsd</td>
<td>Social Distance Children and Teenagers</td>
<td>Child & Teens social distancing, all non-school and non-household contacts with or between children and teens reduced by 90%, household contacts doubled</td>
</tr>
<tr>
<td>ASsd</td>
<td>Social Distance Adults and Seniors</td>
<td>Adults & Seniors social distancing, all non-household non-work contacts with or between adults and seniors reduced by 90%, work contacts reduced by 50%, household contacts doubled</td>
</tr>
<tr>
<td>T</td>
<td>Antiviral Treatment</td>
<td>Antiviral Treatment, % of people (by level of compliance) given antiviral course immediately after diagnosed, reduces infectivity by 60% (from Ferguson et al., 2006)</td>
</tr>
<tr>
<td>P</td>
<td>Household antiviral prophylaxis</td>
<td>Antiviral Prophylaxis, % of household members (by level of compliance) given antiviral for 10 days immediately after individual is diagnosed, reduces susceptibility by 30%, and if they become infected: reduces probability of symptomatic by 65%, reduces infectivity by 60% (from Ferguson et al., 2006)</td>
</tr>
</tbody>
</table>
Healthcare Worker Interventions

| **PPE** | **Personal Protective Equipment for Healthcare Workers** | Healthcare workers wear masks, gloves, gowns, protective eyewear with probability based on a compliance factor from the first day of strategy implementation until there are 0 community cases in 7 days. We assume PPE reduce susceptibility and infectivity by 50%.

| **ObP** | **Outbreak Prophylaxis for Healthcare Workers** | Healthcare workers take daily antivirals with probability based on a compliance factor from the first day of strategy implementation until there are 0 community cases in 7 days. Reduces susceptibility by 30%, probability of becoming symptomatic by 65% and infectivity by 60%.

| **PPV** | **Partially Effective Pandemic Vaccine** | Healthcare workers get vaccine with probability based on a compliance factor prior to the local onset of the epidemic. We assume vaccine reduces the probability of infection by 50%. |
Outcome measures

- Number of simulations that yield epidemics
- Infection rates, community members and HCW
- Illness attack (symptomatic) rate
- Deaths
- Peak infected, community and HCW
- Time to peak infected
- Peak symptomatic
- Time to peak symptomatic
- Epidemic duration (from implementation threshold to last diagnosed)
- Total time of effects (from initial seeding to last person recovered)
- Number of days strategies imposed
- Number of containment cycles needed
- Number of external infections
- Number of antiviral courses given
- Number of days adults are at home (either sick, quarantined, or tending sick or children sent home from school)
- Healthcare site patient throughput
Simulations

- Three community compliance rates: 30%, 60%, and 90%.
- Two healthcare worker compliance rates: 60% and 90%.
- Three attack rates.
- Twenty combinations of community mitigation strategies.
- Eight combinations of healthcare worker strategies.
- 100 simulations for each configuration.
- Total of 18,000 simulations for base community (no healthcare delivery sites) and 270,000 simulations with healthcare delivery sites (288,000 total).
Effect of Healthcare Sites on Number of Infections

![Graph showing the effect of healthcare sites on the number of infections over the days of an epidemic. The graph compares the number of infected individuals between healthcare sites and without healthcare sites. The x-axis represents the days of the epidemic, ranging from 1 to 113, and the y-axis represents the number of infected individuals, ranging from 0 to 2000. The graph shows a peak in the number of infected individuals around day 50, with a higher peak for those without healthcare sites compared to those with healthcare sites.]
Combined Strategies

Healthcare Worker Infections: Effects of Community-Based + Healthcare-Based Mitigation Strategies

Day

of Infections

None
PPE
Best Comm
Best Comm + PPE
Best Comm + PPE + ObP
Best Comm + PPE + ObP + PPV

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210

18
Effect of Community Compliance on HCW Infections

![Graph showing the effect of community compliance on healthcare worker infections. The graph includes lines representing unmitigated, 30%, 60%, and 90% compliance scenarios. The x-axis represents days of the epidemic, and the y-axis represents healthcare worker infections.]
Effect of HCW Compliance on HCW Infections

![Graph showing the effect of HCW compliance on HCW infections.](image-url)
Ranking of HCW Interventions

![Bar chart showing the ranking of HCW interventions. None has the highest total HCW infections, followed by PPE, PPV, ObP, PPE+PPV, PPE + ObP, ObP + PPV, and PPE + ObP + PPV.](image)
Ranking of HCW Interventions

![Bar chart showing the ranking of HCW interventions with categories like None, PPE, PPV, ObP, PPE+PPV, ObP+PPV, and PPE+ObP+PPV. The chart compares 'No Community Strategies' and 'Best Community Strategies'.]
Ranking of HCW Interventions

![Bar graph showing the ranking of HCW interventions with different levels of compliance. The graph compares the peak number of infected individuals under various conditions, such as None, PPE, PPV, ObP, PPE+PPV, ObP+PPV, and PPE+ObP+PPV, under 60% and 90% compliance.]
Patient Throughput at Healthcare Sites, by Mitigation Strategies

- None--All Pts
- PPE + ObP + PPV--All Pts
- Best Comm + PPE + ObP + PPV--All Pts

Day of Epidemic

of patients seen

[Graph showing patient throughput over the course of an epidemic for different mitigation strategies.]
Conclusions

- Extension of model to study effects of presence of healthcare sites in community on pandemic effects.
- Healthcare sites accelerate the pace and peak of the pandemic wave.
- Use of community mitigation measures protects HCW.
- Use of HCW measures significantly protects healthcare workers and slightly blunts the pace and peak of community effects.
- Compliance with measures remains key.