Dynamic Mechanical Strain-Induced Temperature Gradient Coating

A non-destructive coating to reduce false positives and enhance observations of dynamic thermal strain in sonic infrared (SIR) inspections

Evaluating components for discontinuities without damaging the part or system remains a priority for diverse industries and research fields. Low-cost techniques such as fluorescent penetrant inspection (FPI) are used widely by major industries, such as aviation and aerospace, despite limited defect detection and the need for complex, multi-step operations in highly controlled conditions. Non-destructive methods such as sonic infrared (SIR) testing apply ultrasound waves to identify surface defects and cracks. These techniques hold promise for widespread use but stand to improve in the detection of false positives.

Sandia researchers developed a non-destructive coating to enhance observations of dynamic thermal strain and reduce false positives in SIR inspections. This coating may be helpful in making SIR a viable alternative to widely used dye-based methods, such as FPI. Applying a simple coating containing black paint and glass particles to a component or substrate increases emissivity of its surface. By introducing dynamic mechanical strain such as SIR to the coated substrate, the adhered particles generate frictional heating. The resulting localized temperature increases can then be measured with an infrared camera to verify that the entire part was vibrated and thoroughly inspected. In addition to enhancing SIR-based non-destructive testing, this coating has potential applications in structural monitoring of bridges and buildings, modal testing of parts, and as a replacement for accelerometers to detect where vibrations are occurring.

Benefits
  • Non-destructive testing (NDT)
  • Enhances effectiveness of sonic infrared (SIR) inspection techniques
  • Visualizes localized temperature increases and areas of dynamic thermal strain
Applications and Industries
  • Non-destructive testing
  • Structural health monitoring
  • Modal testing and analysis
  • Aerospace
  • Automotive
  • Infrastructure
  • Marine/maritime
  • Military/defense
  • Pipelines
  • Shipping/logistics
Technology ID

SD# 14194

Published

11/11/2019

Last Updated

11/11/2019